Progetto | Bauvorhaben

Comune di Bolzano PROGETTO SINFONIA

RISANAMENTO ENERGETICO

DEGLI EDIFICI RESIDENZIALI VIA PARMA

63 - 65 - 67 - 69 - 71 - 73 - 75

Gemeinde Bozen PROJEKT SINFONIA

ENERGETISCHE SANIERUNG

DER WOHNGEBÄUDE PARMASTRASSE

63 - 65 - 67 - 69 - 71 - 73 - 75

CIG. 5918112484 CUP. I55F13000130004

Progetto preliminare | Vorprojekt

Concetto energetico | Energiekonzept

contenuto | Planinhalt

Bericht - Relazione

numero di progetto | Projektnummer

TAVOLA nr./PLAN nr.

CC - 01

elaborato verfo	elaborato verfasst: A				2015
6					
5					
4					
3					
2					
1					
INDICE INDEX	DATA DATUM	MODIFICA ÄNDERUNG	COMM. BAUHERR	STATICO STATIKER	IMPRESA FIRMA

Commitenti | Bauherren

STADT BOZEN / CITTÀ DI BOLZANO

6.3. ABTEILUNG FÜR ÖFFENTLICHE ARBEITEN, GEBÄUDE

6.3. RIPARTIZIONE LAVORI PUBBLICI, EDIFICI

PROGETTISTA MANDATARIO RISANAMENTO ENERGETICO/ BEAUFTRAGTER PLANER ENERGETISCHE SANIERUNG

M7 Architecture + Design

Architetto Marco Sette

Via Negrelli-Negrellistr. n.13/c 39100 Bolzano-Bozen

tel. 0471/407735-fax. 0471267010

e-mail:info@m-7.it www.m-7.it

SICHERHEIT-SICUREZZA

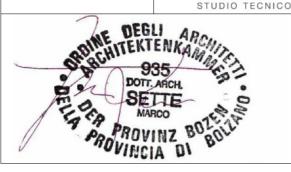
STATICA E CASACLIMA-STATIK UND KLIMAHAUS ARCHITEKTUR-ARCHITETTURA **HLS-IMPIANTI TERMOIDRAULICI HLS-IMPIANTI TERMOIDRAULICI** Arch. Marco Sette Ing. Michele Carlini Dr. Ing. Enzo Zadra 39100 Bozen - Bolzano 39100 Bozen - Bolzano 39100 Bozen - Bolzano Handwerkerstr.31- via degli Artigiani 31 Tel | 0471 286462 Vigiliostrasse 74 - via S.Vigilio 74 Tel | 0471 26 24 24 Fax| 0471 28 11 59 Tel | 0471 407735 Fax | 0471 267010 Fax 0471 286426 E-Mail| info@carlini.bz.it E-Mail sette@m-7 it E-Mail info@studiozadra.191.it Studio Tecnico Technisches Bürg INGENIEURBÜRO M7 Architecture + Design

dott. ing. MICHELE CARLINI

lignaconsult

Ing. Thomas Schrentewein Ing. Monica Tasin 39100 Bozen - Bolzano Negrellistr. 13c- via Negrelli 13c Tel | 0471 058040 Fax| 0471 058041 38121 Trient - Trento

E-Mail| ing monica tasin@gmail.com E-Mail info@lignaconsult.com


Dr. Ing. Enzo Zadra

JUNG ARCHITEKT- GIOVANE ARCHITETTO Arch. Benno Plunger

Eppan - Appiano - Bz S. Antonstr. 10 - Via S. Antonio 10

Tel | 0461 991888

RUP | RUP Ing. Rosario Celi

VORPROJEKT FÜR DIE ENERGETISCHE SANIERUNG DER WOHNGEBÄUDE IN DER GEMEINDE BOZEN, PARMASTRASSE 63-65, 67-69, 71-75

Das vorgeschlagene Konzept für die energetische Sanierung wurde nach den Richtlinien des KlimaHaus R Protokolls ausgearbeitet, wobei auf den größtmöglichen Erhalt der bestehenden Bausubstanz, der Reduzierung des Energiebedarfs und auf die Behaglichkeit der Innenräume geachtet wurde. Außerdem wurden hinsichtlich dem KlimaHaus Nature Protokoll die Maßnahmen zur Bewertung der Nachhaltigkeit bei der Innenluftqualität berücksichtigt.

Für die drei Wohngebäude

- Hausblock A, Parmastraße 63-65
- Hausblock B, Parmastraße 67-69
- Hausblock C, Parmastraße 71-73-75

sind verschiedene Sanierungsmaßnahmen zur Verbesserung der Energieeffizienz der Gebäudehülle vorgesehen:

Die Außenwände werden mit 20 cm dicken Steinwolleplatten gedämmt, die eine Wärmeleitfähigkeit von 0,036 W/mk aufweisen. Mit dieser Maßnahme wird der Grenzwert des Wärmedurchgangskoeffizienten von 0,34 W/m²K laut KlimaHaus R Protokoll weit unterschritten. Der Mittelwert beträgt 0,15 W/m²K.

Die Decke zum Tiefparterre wird an der Unterseite mit Sandwichpaneelen aus Steinwolle und Holzwolleleichtbauplatten gedämmt, um auch in diesem Bereich den Anforderungen des KlimaHaus R Protokolls zu genügen.

Sämtliche Fenster werden ausgebaut und durch neue Fenster mit besseren thermischen und akustischen Eigenschaften ersetzt. Zur Verschattung sind elektrisch betriebene Raffstore vorgesehen.

Die Aufstockung erfolgt in Holzrahmenbauweise, wo die Dämmstoffe (Holzfaser für Wände und Dächer) bereits in den Hohlräumen eingebaut sind. Für den kontinuierlichen Außenabschluss und zur Verbesserung des Wärmeschutzes wird an den Außenwänden der Aufstockung zusätzlich eine 10 cm dicke Steinwolledämmung angebracht. Die Hohlkastenelemente der Flachdächer sind mit 28 cm Holzfaser gedämmt.

In Bezug auf die Haustechnik wird in jeder Wohnung eine dezentrale kontrollierte Wohnraumlüftungsanlage (die Anzahl ist auf die Fläche der Wohnungen ausgelegt) installiert. Mit dieser Maßnahme werden neben den wärmetechnischen Vorteilen auch die Qualität der Innenluft und der Feuchteschutz verbessert, was der Vorbeugung gegen Kondensat und Schimmelpilzbildung dient.

Alle Wohnungen werden an das Fernwärmenetz angeschlossen, die Gasversorgung wird abgetragen. Die Versorgung mit Fernwärme und die zusätzlichen Fotovoltaikanlagen auf den Dächern reduzieren nochmals den Energiebedarf, was dem Konzept der nachhaltigen, teilweise autarken Energieversorgung entspricht. Sämtliche Sanierungsmaßnahmen sind auf die geringstmögliche Störung der Hausbewohner ausgelegt, wobei die Wohnungen während der Baumaßnahmen benützbar bleiben.

Nach der energetischen Sanierung erreichen die Gebäude folgende Energiekennzahlen:

Hausblock A: Energieeffizienzklasse der Gebäudehülle: 17 kWh/m²a
 CO₂-Emissionswert: 10 kg/m²a

Hausblock B: Energieeffizienzklasse der Gebäudehülle: 18 kWh/m²a
 CO₂-Emissionswert: 10 kg/m²a

- Hausblock C: Energieeffizienzklasse der Gebäudehülle: 19 kWh/m²a

CO₂-Emissionswert: 10 kg/m²a

PROGETTO PRELIMINARE PER IL RISANAMENTO ENERGETICO DEGLI EDIFICI RESIDENZIALI IN COMUNE DI BOLZANO VIA PARMA N. 63-65, 67-69, 71-75

Il concetto del risanamento energetico proposto è stato pensato in modo tale da poter soddisfare quanto richiesto dal Protocollo Casa Clima R, ovvero proporre un intervento finalizzato a sfruttare il potenziale di miglioramento della struttura esistente, ridurne il fabbisogno energetico e migliorare il comfort indoor; e da quanto previsto dalla Direttiva tecnica Casa Clima Nature per quanto riguarda la valutazione di sostenibilità degli edifici in termini di qualità dell'aria interna.

Per tutti e tre gli edifici, denominati:

- Blocco A, via Parma civici 63-65
- Blocco B, via Parma civici 67-69
- Blocco C, via Parma civici 71-73-75

umiditá, evitando la formazione di condensa e muffe.

sono stati quindi previsti diversi interventi sulle strutture esistenti atti a migliorare la classe di efficienza energetica dell'involucro dell'edificio.

Le pareti esterne verranno coibentate con pannelli di lana di roccia con un valore di conducibilità termica di 0,036 W/mk e spessore di 20 cm in modo tale da raggiungere un valore di trasmittanza termica dell'elemento strutturale ampiamente inferiore al limite prestazionale previsto dal protocollo di 0,34 W/m²K. In media il valore è pari a 0,15 W/m²K.

Il solaio verso il semi-interrato verrá isolato dal basso con pannelli in lana di legno e lana di roccia in modo da rispettare, anche per questo elemento costruttivo, il limite di trasmittanza previsto dal Protocollo Casa Clima R

Tutti gli infissi verranno sostituiti con nuovi di migliori caratteristiche termoacustiche e sistemi oscuranti motorizzati raffstore regolabili.

Le nuove strutture della sopraelevazione sono previste in legno con interposto all'interno giá il materiale isolante (fibra di legno sia per le pareti che per la copertura). Per mantenere il filo esterno delle pareti lungo tutta l'altezza degli edifici e per migliorare ulteriormente il valore di trasmittanza di questo elemento, si prevede uno spessore aggiuntivo di circa 10 cm di lana di roccia sulle pareti perimetrali della sopraelevazione. Gli elementi piani della copertura sono coibentati con fibra di legno con spessore di 28 cm. Per quanto concerne la parte impiantistica, in ogni alloggio verranno installate delle macchine VMC decentralizzate (il numero dipende dalle dimensioni dell'appartamento). In questo modo oltre ai vantaggi energetici derivanti dall'installazione di tali macchine si va a migliorare la qualitá dell'aria interna ed il livello di

Gli alloggi verranno allacciati alla rete di teleriscaldamento, abbandonando la vecchia rete a gas. In questo modo anche grazie all'installazione aggiuntiva di pannelli fotovoltaici in copertura, il fabbisogno energetico degli edifici verrà ridotto, perseguendo il concetto della sostenibilità energetica degli stessi.

Tutti gli interventi sono stati pensati in modo da risultare il meno invasivi nei confronti degli inquilini, che potranno vivere nei loro alloggi durante il periodo dei lavori.

A seguito degli interventi previsti, gli edifici raggiungono il seguente livello energetico:

Blocco A: classe di efficienza energetica dell'involucro 17 kWh/m²a

indice di emissione di CO₂: 10kg/m²a

- Blocco B: classe di efficienza energetica dell'involucro 18 kWh/m²a

indice di emissione di CO₂: 10 kg/m²a

Blocco C: classe di efficienza energetica dell'involcuro 19 kWh/m²a

Indice di emissione di CO₂: 10 kg/m²a

BLOCCO A – CIVICI 63-65 BLOCK A – HAUSNR. 63-65

Dati dell'oggetto				
oggetto:	Blocco A; civici 63-65			
	Bolzano			

Destinazione d'uso dell'edificio			E.1 (1) Edificio plurifamiliare		
Tipo di costruzione:			costruzione pesante		
Tipo di intervento Rinnovamento degli impianti		Ristrutturazione > 25% della superficie dell'involucro (finestre escluse		ro (finestre escluse	
superficie utile lorda riscaldata [m²]			BGF _B	2.1	97
superficie utile netta riscaldata [m²] (opzionale)			NGF _B =		1.801
volume lordo riscaldato dell'edificio [m³]			V _B =	6.9	47
volume netto riscaldato dell'edificio [m³] (opzionale)			V _N =		4.863
numero di persone nell'edificio		Pers =		54,00	

dati climatici		dati climatici dei Comuni dell'Alto Adige		•
Provincia	ovincia			•
Comune		Bolzano		•
Altitudine [m]	/ differenza di altitudine rispetto al municipio [m]	ipio [m] 262		
Informazioni specifich	e sul comune (NO per i comuni dell' Alto Adige e del Friul	i)		
2° Provincia vicina				•
posizione del Comune	e (Lat/Lon) in valore decimale (p.es: 42°57' = 42,95)			
distanza dal capoluog	o di Provincia [m]			
distanza dal 2°capolu	ogo di Provincia [m]			
calcolo dati climatici		Clima calcolo	o - Berechnung	

Blower door test	n ₅₀ =	V	/ol/h
temperatura esterna di progetto invernale del Comune [℃]	Θ _{ne} =		-15,00
temperatura esterna di progetto invernale del capoluogo di Provinc	cia [℃]	Θ _{ne} =	-15,0
temperatura media interna [°C] inverno	$\Theta_i =$		20,0
temperatura media interna [℃] estate	Θ _e =		26,0
potenza termica media degli apporti di calore interni [W/m²] - inve	rno		3,5
potenza termica media degli apporti di calore interni [W/m²] - esta	te		3,5

mese	temperatura media mensile esterna [°C] Bolzano	radiazione globale giornaliera media mensile su superficie orizzontale [kWh/m²d] Bolzano	temperatura di ingresso dell'acqua fredda sanitaria [°C]	
Gen.	-0,50	1,28	15	
Feb.	2,77	2,42	15	
Mar.	8,00	3,67	15	
Apr.	12,80	4,81	15	
Mag.	16,62	5,83	15	
Giu.	21,09	6,06	15	
Lug.	22,94	6,36	15	
Ago.	22,18	5,28	15	
Set.	18,69	4,00	15	
Ott.	12,26	2,61	15	

Nov.	5,50	1,47	15	Casa
Dic.	0.59	1.08	15	

Impianto di ventilazione					
oggetto:	Blocco A; civici 63-65	Q _h =	17 kWh/m²a	Nature	172 points
	Bolzano	Q _{c,sens} =	6 kWh/m²a	CO ₂ =	10 kg/m²a

ventilazione notturna (scegliere "chiuso" per la certificazione)				
ventilazione notturna	chiuso			
aperture				
indice di ricambio d'aria n =		1/h		

apparecchio di ventilazione 1 Ma	arca e modello:	ls	odomus Meltem M-WR	G
utilizzo			solo invernale	▼
portata d'aria esterna dell'apparecchio di v	entilazione	$q_{v,d} =$	1.945	m³/h
efficienza termica del recuperatore di calor	re - inverno	$\eta_{\theta i,d} \! = \!$	73	%
efficienza termica del recuperatore di calor	re - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di c	alore - inverno	$\eta_{xi,d} =$		%
assorbimento elettrico specifico		SFP _d =	0,17	Wh/m ³
volume ventilato		V _N =	4.863	m³
tempo di servizio giornaliero	t _B =	24	h/d	
indice di ricambio d'aria fittizio - inverno		n =	0,21	1/h
indice di ricambio d'aria fittizio - estate		n =		1/h

apparecchio di ventilazione 2 Marca e modello:		
utilizzo	solo invernale	₹
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{ heta_{i,d}} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 3 Marca e modello:		
utilizzo	solo invernale	▼
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta,d}$ =	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e}, ext{d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

ventilazione naturale			
volume ventilato - inverno	V _N =		m³
volume ventilato - estate	V _N =	4.863	m³
indice di ricambio d'aria	n =	0,50	1/h

Recuperatore attivo 1	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	atori	SFP _d =		Wh/m ³
volume ventilato		$V_N =$		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

Recuperatore attivo 2	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2°/A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	tori	SFP _d =		Wh/m ³
volume ventilato		V _N =		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

Recuperatore attivo 3	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2 º/A20 °	φ _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20°	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	atori	SFP _d =		Wh/m ³
volume ventilato		V _N =		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

apparecchio di ventilazione 4 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d}$ $=$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 5 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	η _{θi,d} =	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 6 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d}$ =	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

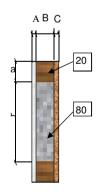
apparecchio di ventilazione 7 Marca e modello:			
utilizzo		solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$		m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$		%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$		%
assorbimento elettrico specifico	SFP _d =		Wh/m ³
volume ventilato	$V_N =$		m³
tempo di servizio giornaliero	t _B =		h/d

indice di ricambio d'aria fittizio - inverno	n =	CasaC/ima
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 8 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	η _{θi,d} =	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e}, ext{d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 9 Marca e modello:		
utilizzo	solo invernale	▼
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e,d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 10 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{ heta_{i,d}} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta_{ extsf{e}}, extsf{d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d}\!=\!$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

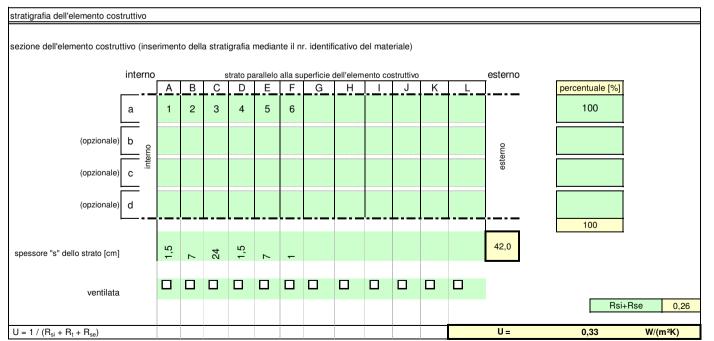

Parete1 esterna I+II in pietra	parete es	terna non ventilata

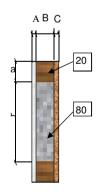
Risultati										
Qh = 17 kWh/mqa	Nature	172 points								
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a								

trasmittanza U secondo stratigrafia [W/m²K]															
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process o	AP	PEI	certificat o	regionale		
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Bonus Nature		
1	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4				
2	332 Muratura in pietra	2,300	2600	1	70	0,04	100	0,06	0,06	0,0002	0,0				
3	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4				
4															
5															
6															
7									***************************************						
8															
9															
10															
11															
12															
13															

atigrafia dell'elemento cos	liulli	70														
zione dell'elemento costrui	tivo	(inse	riment	o dell	a strati	grafia	mediar	ite il n	r. identif	icativo d	del mate	eriale)				
	inte	erno			s	trato pa	arallelo	alla su	perficie	dell'elem	nento co	struttivo			esterno	
			Α	В	С	D	E	F	G	Н		J	K	L]	percentuale [%]
	а		1	2	1	3	1									100
(opzionale)	b	Ou													OL.	
(opzionale)	С	interno													esterno	
(opzionale)	d															
		-														100
pessore "s" dello strato [cm]			3	48	-	20	Ø								74,0	
ventilata																Rsi+Rse 0,17
= 1 / (R _{si} + R _t + R _{se})															U=	0,17 W/(m²K)

	24h	25 h				
trasmittanza termica U [W/m²K]	0,17	0,17				
capacità termica interna [Wh/m²K]	21	21				
capacità termica esterno [Wh/m²K]	12	12				
trasmittanza termica periodica [W/m²	0,00	0,00				
sfasamento [h]	19,0	19,3				
ammettenza Y11 [W/m²K]	5,38	5,36				
Fa fattore di attenuazione [-]	0,02	0,02				
Fs fattore di smorzamento [-]	0,33	0,33				
Msurf	4,42					
	costruzione	ciclo di vita				
PEI [MJ/m²]	423,0	826,7				
GWP [kg CO2e/m²)]	112,7	152,8				
GWPprocesso [kg CO2e/m²)]	112,8	152,9				
AP [g SO2e/m²]	0,44	0,65				
ICC [-]	74	0				
quantità di materiali	5					
quantità di materiali certificati	0					

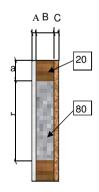



	Solaio verso cantina	parete ve	rso scantinato non riscaldato
Γ			

Risultati										
Qh = 17 kWh/mqa	Nature	172 points								
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a								

trasmittanza U secondo stratigrafia [W/m²K]																
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale			
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Bonus Nature			
1	266 piastrelle in ceramica	1,300	2300	0,84	150	0,01	50	0,78	0,78	0,0028	13,2					
2	57 caldana	1,330	2000	1,07	100	0,04	100	0,10	0,10	0,0002	0,6					
3	63 solaio con travetti e blocchi in calcest	ruzz(0,800	1500	1,11	50	0,04	100	0,10	0,10	0,0002	0,8					
4	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4					
5	236 pannello di polistirene espanso EPS 3	0 kg 0,031	30	1,45	30	0,01	50	4,17	4,17	0,0149	98,9					
6	184 pannello di lana di legno mineralizzata	con 0,078	450	1	5	0,2	50	-0,13	0,42	0,0009	3,8					
7																
8																
9																
10																
11																
12																
13																

	24h	25 h				
trasmittanza termica U [W/m²K]	0,33	0,33				
capacità termica interna [Wh/m²K]	21	22				
capacità termica esterno [Wh/m²K]	2	2				
trasmittanza termica periodica [W/m²	0,02	0,02				
sfasamento [h]	13,5	13,7				
ammettenza Y11 [W/m²K]	5,53	5,50				
Fa fattore di attenuazione [-]	0,06	0,06				
Fs fattore di smorzamento [-]	0,31	0,31				
Msurf	0,94					
	costruzione	ciclo di vita				
PEI [MJ/m²]	1078,0	1795,6				
GWP [kg CO2e/m²)]	89,5	131,3				
GWPprocesso [kg CO2e/m²)]	92,1	133,8				
AP [g SO2e/m²]	0,24	0,38				
ICC [-]	64	0				
quantità di materiali	6					
quantità di materiali certificati	0					
quantità di materiali regionali	0					

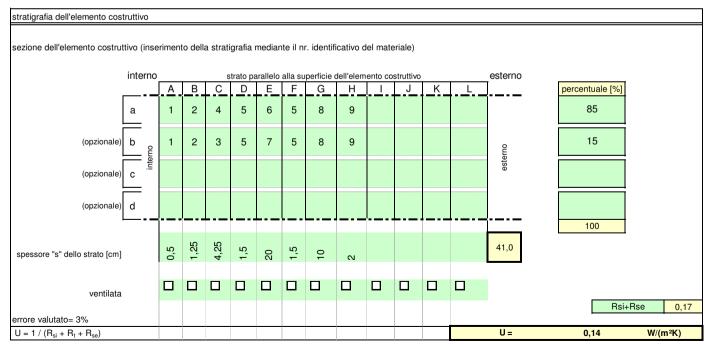

Parete1 esterna III+IV in forato	parete esterna non ventilata

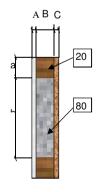
Risultati											
Qh = 17 kWh/mqa	Nature	172 points									
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a									

trasmittanza U secondo stratigrafia [W/m²K]														
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale	
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO ₂ e/kg	g SO₂ e/kg	MJ/kg	Bonus	Bonus Nature	
1	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4			
2	77 mattone forato	0,360	850	0,88	5	0,04	100	0,18	0,18	0,0005	2,3			
3	253 lana di roccia 60 kg/m ³	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4			
4														
5														
6							***************************************							
7														
8														
9														
10														
11														
12														
13														

atigrafia dell'elemento cos																
zione dell'elemento costru	ttivo (inse	riment	o dell	a strati	grafia	median	ite il n	r. identif	icativo c	lel mate	eriale)				
	inte	rno			s	trato pa	arallelo	alla su	perficie	dell'elem	ento co	struttivo			esterno	
			<u>A</u>	В	С	D	<u>E</u>	F	G	_H_		J	K	L_		percentuale [%]
	а		1	2	1	3	1									100
(opzionale)	b	no													OE.	
(opzionale)	С	interno													esterno	
(opzionale)	d															
																100
spessore "s" dello strato [cm]			3	48	-	20	N								74,0	
ventilata																
ventilata																Rsi+Rse 0,17
$J = 1 / (R_{si} + R_t + R_{se})$		_													U=	0,14 W/(m²K)

	24h	25 h
trasmittanza termica U [W/m²K]	0,14	0,14
capacità termica interna [Wh/m²K]	17	17
capacità termica esterno [Wh/m²K]	12	12
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	23,3	23,6
ammettenza Y11 [W/m²K]	4,42	4,38
Fa fattore di attenuazione [-]	0,01	0,01
Fs fattore di smorzamento [-]	0,45	0,45
Msurf	4,4	12
Msurf	4,4 costruzione	ciclo di vita
Msurf PEI [MJ/m²]		
	costruzione	ciclo di vita
PEI [MJ/m²]	costruzione 1340,7	ciclo di vita 1744,4
PEI [MJ/m²] GWP [kg CO2e/m²)]	costruzione 1340,7 114,2	ciclo di vita 1744,4 154,3
PEI [MJ/m²] GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)]	costruzione 1340,7 114,2 114,4	ciclo di vita 1744,4 154,3 154,5
PEI [MJ/m²] GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)] AP [g SO2e/m²]	costruzione 1340,7 114,2 114,4 0,42	ciclo di vita 1744,4 154,3 154,5 0,63
PEI [MJ/m²] GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)] AP [g SO2e/m²] ICC [-]	costruzione 1340,7 114,2 114,4 0,42 88	ciclo di vita 1744,4 154,3 154,5 0,63

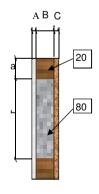



Parete sopraelevazione (verso esterno)	parete es	terna non ventilata

Risultati		
Qh = 17 kWh/mqa	Nature	172 points
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a

trasmittanza U secondo Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat 0	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Nature
1	28 intonaco di calce e gesso	0,700	1300	0,9	10	0,02	50	0,09	0,09	0,0003	1,4		
2	16 lastre di cartongesso	0,210	900	1,05	8	0,02	50	0,23	0,26	0,0007	4,8		
3	117 lamiera di alluminio anodizzato	#####	2800	0,92	#####	0	50	6,42	6,42	0,0302	85,8		
4	309 intercap d'aria non ventilata flussoorizzoni	1,667	1,2	1	1	0,02	100	0,00	0,00	0,0000	0,0		
5	189 pannello OSB 3 con colla poliuretanica	0,130	660	2	240	0,2	50	-1,05	0,49	0,0022	11,8		
6	178 pannello in fibra di legno 160 kg/m³	0,040	160	2	5	0,2	50	-0,80	0,91	0,0040	14,4		
7	190 legname grezzo, legno di abete rosso, es	s 0,130	540	2	50	0,2	50	-1,41	0,11	0,0006	1,7		
8	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
9	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
10													
11													
12													
13													

	24h	25 h			
trasmittanza termica U [W/m²K]	0,14	0,14			
capacità termica interna [Wh/m²K]	11	11			
capacità termica esterno [Wh/m²K]	11	11			
trasmittanza termica periodica [W/m²	0,01	0,01			
sfasamento [h]	19,0	19,3			
ammettenza Y11 [W/m²K]	2,85	2,80			
Fa fattore di attenuazione [-]	0,04	0,04			
Fs fattore di smorzamento [-]	0,64	0,65			
Msurf	7,99				
	costruzione	ciclo di vita			
PEI [MJ/m²]	2424,1	4848,3			
GWP [kg CO2e/m²)]	69,5	241,1			
GWPprocesso [kg CO2e/m²)]	171,6	343,3			
AP [g SO2e/m²]	0,81	1,62			
ICC [-]	33	0			
quantità di materiali	8				
quantità di materiali certificati	0				
quantità di materiali regionali	0				


Solaio di copertura sopraelevazione	soffitto esterno non ventilato

Risultati		
Qh = 17 kWh/mqa	Nature	172 points
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a

trasmittanza U secondo Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO ₂ e/kg	MJ/kg	Bonus	Nature
1	286 substrato vegetale per tetto verde	0,700	500	2	10	0	50	0,02	0,02	0,0001	0,3		
2	128 guaina impermeabilizzante bituminosa co	n 0,230	1247	1	1000	0,01	25	1,58	1,61	0,0087	51,2		
3	189 pannello OSB 3 con colla poliuretanica	0,130	660	2	240	0,2	50	-1,05	0,49	0,0022	11,8	Ш	
4	178 pannello in fibra di legno 160 kg/m³	0,040	160	2	5	0,2	50	-0,80	0,91	0,0040	14,4		
5	190 legname grezzo, legno di abete rosso, es	ss 0,130	540	2	50	0,2	50	-1,41	0,11	0,0006	1,7		
6	317 intercap d'aria non ventilata flusso ascen	d 1,875	1,2	1	1	0,02	100	0,00	0,00	0,0000	0,0		
7	117 lamiera di alluminio anodizzato	#####	2800	0,92	#####	0	50	6,42	6,42	0,0302	85,8		
8	16 lastre di cartongesso	0,210	900	1,05	8	0,02	50	0,23	0,26	0,0007	4,8		
9	28 intonaco di calce e gesso	0,700	1300	0,9	10	0,02	50	0,09	0,09	0,0003	1,4		
10													
11													
12													
13													

stratigrafia dell'elemento cos	truttivo															
sezione dell'elemento costru	ttivo (in:	serim	nento	o della	a strati	grafia :	mediar	nte il n	r. identif	cativo d	lel mate	eriale)				
	intern	10			s	trato pa	arallelo	alla su	perficie o	dell'elem	ento co	struttivo			esterno	
			Α	В	С	D	E	F	G	_H_		J	K	L]	percentuale [%]
	а	ç	9	8	6	3	4	3	2	1						85
(opzionale)	b	9	9	8	7	3	5	3	2	1					OLL	15
(opzionale)	c is	ou lieu													esterno	
(opzionale)	d															
		7-														100
spessore "s" dello strato [cm]		и	ი,ე	1,25	4,25	2,2	28	2,2	0,5	10					48,9	
ventilata]													
ventilata errore valutato= 2%																Rsi+Rse 0,14
$U = 1 / (R_{si} + R_t + R_{se})$															U =	0,17 W/(m ² K)

	24h	25 h
trasmittanza termica U [W/m²K]	0,17	0,17
capacità termica interna [Wh/m²K]	12	12
capacità termica esterno [Wh/m²K]	21	21
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	24,0	24,2
ammettenza Y11 [W/m²K]	3,03	2,99
Fa fattore di attenuazione [-]	0,03	0,03
Fs fattore di smorzamento [-]	0,62	0,63
Msurf	7,9	99
	costruzione	ciclo di vita
PEI [MJ/m²]	2857,9	6354,4
GWP [kg CO2e/m²)]	35,7	236,3
GWPprocesso [kg CO2e/m²)]	180,6	381,2
AP [g SO2e/m²]	0,84	1,78
ICC [-]	33	0
quantità di materiali	8	
quantità di materiali certificati	0	
quantità di materiali regionali	0	

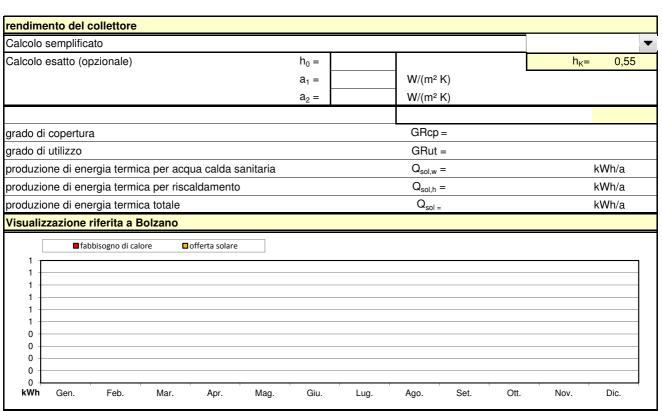
	fabbisogno di riscaldamento
oggetto:	Blocco A; civici 63-65
	Bolzano

involucro dell'edificio					
superficie di dispersione termica dell'edificio					
$A_{B} = \hat{a} A_{i}$	A _B =	2.539	m²		
rapporto superficie dell'involucro riscaldato volume lordo riscaldato					
A_{B}/V_{B}	A/V =	0,37	1/m		

Indici				
Indice per elementi costruttivi				
$L_e + L_u + L_g += \mathring{a} A_i * U_i * f_i$	$L_e + L_u + L_g =$	791	W/K	
Aumento dell'indice per ponti termici				
algoritmo dettagliato	$L_{\psi} + L_{c} =$	0	W/K	
Indice di trasmissione dell'involucro dell'edificio				
$L_T = L_e + L_u + L_g + L_y + L_c$	L _T =	791	W/K	
Indice di ventilazione dell'involucro dell'edificio				
$L_V = r_a * c_a / 3600 * S(n^{(i)} * V_N^{(i)})$	L _V =	335	W/K	
Indice complessivo				
$L = L_T + L_V$	L =	1.126	W/K	

coefficiente medio di trasmissione globale						
coefficiente medio di trasmissione globale dell'involucro dell'edificio						
$U_m = L_T / A_B$	U _m =	0,31	$W/(m^2K)$			

guadagni e perdite di calore riferito a		Bolzano	Bolzano	
perdita di calore per trasmissionedurante il periodo di riscaldamento (ottapr.) $Q_T = L_T * HGT$	Q _T =	56.626	56.626	kWh/a
perdita di calore per ventilazione durante il periodo di riscaldamento (ottapr.) $Q_V = \ L_V \ ^* \ HGT$	Q _V =	23.956	23.956	kWh/a
guadagni per carichi internidurante il periodo di riscaldamento (ottapr.) $Q_i = \ q_i * NGF_B * HT$	Q _i =	32.075	32.075	kWh/a
guadagni solaridurante il periodo di riscaldamento (ottapr.) $Q_s = S I_j * (S A_g * f_S * g_w)_j$	Q _s =	34.789	34.789	kWh/a
fabbisogno di riscaldamento $Q_h = Q_T + Q_V - h_h (Q_S + Q_i) - Qrec,attivi$	Q _h =	32.047	32.047	kWh/a
rapporto tra guadagni e perdite di calore $Y = (Q_s + Q_i) / (Q_T + Q_V)$	γ=	83	83	%
fattore di utilizzo degli apporti termici $\eta_h = (QT + QV - Qh - Qrec,attivi) / (QS + Qi)$	n _h =	73	72,6	%


Fabbisogno di energia termica e potenza di riscaldamento riferito a	Bolzano	Bolzano		
fabbisogno di energia termica per riscaldamento relativo alla superficie netta				
$HWB_{NGF} = Q_h / NGF_B$	HWB _{NGF} =	17,0	17,0	kWh/(m²a)
potenza di riscaldamento dell'edificio				
$P_{tot} = (L_T + L_V) * (q_{i-} q_{ne})$	P _{tot} =	39,4	39,4	kW
potenza di riscaldamento relativa alla superficie netta				
$P_1 = P_{tot} / NGF_B$	P ₁ =	21,9	21,9	W/m ²

Classe di efficenza energetica dell'involucro				
	А	17	kWh/(m²a)	

	Impianto solare termico				
oggetto:	Blocco A; civici 63-65	Q _h =	17 kWh/m²a	Nature	172 points
	Bolzano	Q _{c,sens} =	6 kWh/m²a	CO ₂ =	10 kg/m²a

dati generali	Mar	ca e modello:	
superficie netta del singolo collettore	A _N =	m²	uso
numeri di collettori	n _K =		•
azimuth (-90° = est +90° = ovest)	f _S =	٥	
zenith	f _N =	٥	

1		impianto fotovoltaico		
oggetto:	Blocco A; civid	ci 63-65 Q _h = 17 kWh/m²a	Nature	172 points
	Bolzano	$Q_c = 11 \text{ kWh/m}^2 a$	CO ₂ =	10 kg/m²a

ti generali			Marc	a e modell	o:			
perficie totale netta			A _{Ph} =	59	m²			
ndimento impianto fotovolta	aico		h _{Ph} =	20	%			
tenza massima			P _{peak} =	12	kW _{peak}			
imuth (-90 = est +90 = ove	st)			0	0			
nith				25	۰			
						Bolzano	Bolzano	
ado di copertura					GRcp =	80%	80%	
ado di utilizzo					GRut =	83%	83%	
ergia elettrica prodotta ed	utilizzata dall'edi	ficio			$Q_{el,used,an} =$	11.694	11.694	kWh/a
ergia elettrica prodotta ed	esportata				$Q_{el,exp,an} =$	0	0	kWh/a
ergia elettrica prodotta e re	e-importata				$Q_{el,redel,an} =$	2.378	2.378	kWh/a
sualizzazione riferita a Bo	olzano							
200 000 800 600 400 200 0 6 Gen. Feb.	Mar. Apr.	Mag.	Giu.	Lug.	Ago. Set.	Ott.	Nov.	Dic.
Energia elettrica da fotovo	Itaico utilizzata pe		■ Raffresca	mento	■ Ausiliari elettrici	Illuminazio	ne	
900 800 700 600								

BLOCCO B – CIVICI 67-69 BLOCK B – HAUSNR. 67-69

Dati dell'oggetto					
oggetto:	Blocco B; civici 67-69				
	Bolzano				

Destinazione d'uso dell'edificio		E.1 (1) Edificio plurifamiliare			
Tipo di costruzione:		costruzione pesante		•	
Tipo di intervento	Rinnovamento degli impianti	•	Ristrutturazione > 25% della superficie dell'involucro (finestre esc		
superficie utile lorda riscaldata [m²]			BGF _B =	2.1	97
superficie utile netta riscaldata [m²] (opzionale)			$NGF_{B} =$		1.801
volume lordo riscaldato dell'edificio [m³]			$V_B =$	6.9	948
volume netto riscaldato dell'edificio [m³] (opzionale)			$V_N =$		4.863
numero di persone nell'edificio			Pers =		54,00

dati climatici		dati climatici dei Comuni dell'Alto Adige		
Provincia		Bolzano		•
Comune		Bolzano		•
Altitudine [m]	/ differenza di altitudine rispetto al municipio [m]	262		
Informazioni specifich	e sul comune (NO per i comuni dell' Alto Adige e del Friu	li)		
2° Provincia vicina				•
posizione del Comune	e (Lat/Lon) in valore decimale (p.es: 42°57' = 42,95)			
distanza dal capoluog	o di Provincia [m]			
distanza dal 2°capolu	ogo di Provincia [m]			
calcolo dati climatici		Clima calcolo	o - Berechnung	

Blower door test	n ₅₀ =	V	/ol/h
temperatura esterna di progetto invernale del Comune [℃]	Θ _{ne} =		-15,00
temperatura esterna di progetto invernale del capoluogo di Provinc	cia [℃]	Θ _{ne} =	-15,0
temperatura media interna [℃] inverno	Θ _i =		20,0
temperatura media interna [℃] estate	Θ _e =		26,0
		<u>. </u>	
potenza termica media degli apporti di calore interni [W/m²] - inve	rno		3,5
potenza termica media degli apporti di calore interni [W/m²] - esta	te		3,5

mese	temperatura media mensile esterna [°C] Bolzano	radiazione globale giornaliera media mensile su superficie orizzontale [kWh/m²d] Bolzano	temperatura di ingresso dell'acqua fredda sanitaria [°C]	
Gen.	-0,50	1,28	15	
Feb.	2,77	2,42	15	
Mar.	8,00	3,67	15	
Apr.	12,80	4,81	15	
Mag.	16,62	5,83	15	
Giu.	21,09	6,06	15	
Lug.	22,94	6,36	15	
Ago.	22,18	5,28	15	
Set.	18,69	4,00	15	
Ott.	12,26	2,61	15	

Nov.	5,50	1,47	15	Cas
Dic.	0,59	1,08	15	

Impianto di ventilazione					
oggetto:	Blocco B; civici 67-69	Q _h =	18 kWh/m²a	Nature	179 points
	Bolzano	Q _{c,sens} =	6 kWh/m²a	CO ₂ =	10 kg/m²a

ventilazione notturna (scegliere "chiuso" per la certificazione)			
ventilazione notturna	chiuso		
aperture			
indice di ricambio d'aria n =		1/h	

apparecchio di ventilazione 1 Ma	arca e modello:	ls	odomus Meltem M-WR	G
utilizzo			solo invernale	▼
portata d'aria esterna dell'apparecchio di v	entilazione	$q_{v,d} =$	1.945	m³/h
efficienza termica del recuperatore di calor	re - inverno	$\eta_{\theta i,d} \! = \!$	73	%
efficienza termica del recuperatore di calor	re - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di c	alore - inverno	$\eta_{xi,d} =$		%
assorbimento elettrico specifico		SFP _d =	0,17	Wh/m ³
volume ventilato		V _N =	4.863	m³
tempo di servizio giornaliero		t _B =	24	h/d
indice di ricambio d'aria fittizio - inverno		n =	0,21	1/h
indice di ricambio d'aria fittizio - estate		n =		1/h

apparecchio di ventilazione 2 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d}$ =	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e,d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 3 Marca e modello:			
utilizzo	s	solo invernale	
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =		m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$		%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{\text{xi,d}} =$		%
assorbimento elettrico specifico	SFP _d =		Wh/m ³
volume ventilato	V _N =		m³
tempo di servizio giornaliero	t _B =		h/d
indice di ricambio d'aria fittizio - inverno	n =		1/h
indice di ricambio d'aria fittizio - estate	n =		1/h

ventilazione naturale			
volume ventilato - inverno	V _N =	0	m³
volume ventilato - estate	$V_N =$	4.863	m³
indice di ricambio d'aria	n =	0,50	1/h

Recuperatore attivo 1	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2 % A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	atori	SFP _d =		Wh/m ³
volume ventilato		$V_N =$		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

Recuperatore attivo 2	Marca e modello:			
portata d'aria totale dell'apparecchio di ventilazione		$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2°/A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	tori	SFP _d =		Wh/m ³
volume ventilato		V _N =		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

Recuperatore attivo 3	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2º/A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	tori	SFP _d =		Wh/m ³
volume ventilato		$V_N =$		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

apparecchio di ventilazione 4 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta_{i,d}} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 5 Marca e modello:		
utilizzo	solo invernale	▼
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

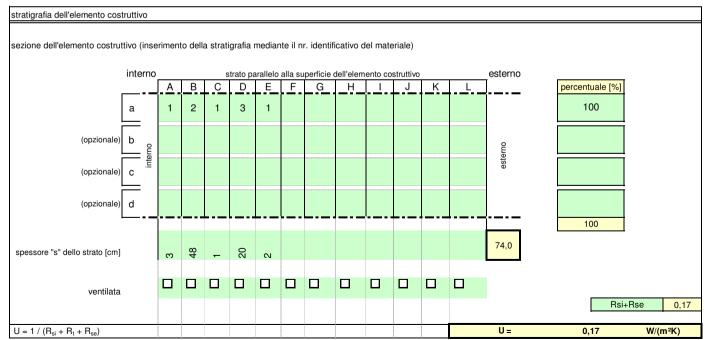
apparecchio di ventilazione 6 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

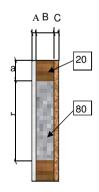
apparecchio di ventilazione 7 Marca e modello:			
utilizzo		solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$		m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$		%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$		%
assorbimento elettrico specifico	SFP _d =		Wh/m ³
volume ventilato	$V_N =$		m³
tempo di servizio giornaliero	t _B =		h/d

indice di ricambio d'aria fittizio - inverno	n =	CasaC/ima
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 8 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta i,d}$ $=$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 9 Marca e modello:		
utilizzo	solo invernale	▼
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e,d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

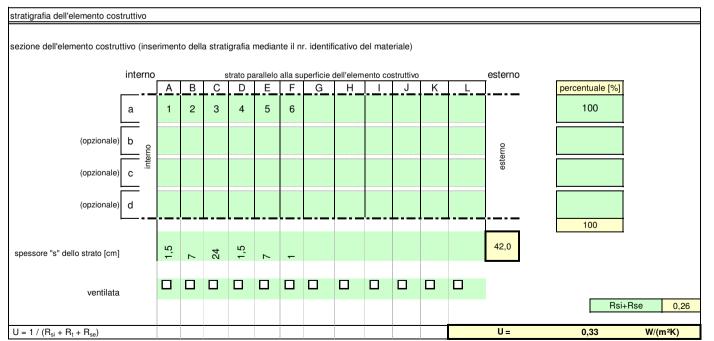

apparecchio di ventilazione 10 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	η _{θi,d} =	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta_{ extsf{e}}, extsf{d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d}\!=\!$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

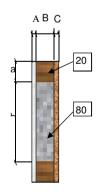

Parete1 esterna I+II in pietra	parete esterna non ventilata

Risultati							
Qh = 18 kWh/mqa	Nature	179 points					
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a					

Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO ₂ e/kg	MJ/kg	Bonus	Nature
1	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
2	332 Muratura in pietra	2,300	2600	1	70	0,04	100	0,06	0,06	0,0002	0,0		
3	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
4												Ш	
5													
6													
7													
8													
9													
10													
11													
12													
13													

	24h	25 h
trasmittanza termica U [W/m²K]	0,17	0,17
capacità termica interna [Wh/m²K]	21	21
capacità termica esterno [Wh/m²K]	12	12
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	19,0	19,3
ammettenza Y11 [W/m²K]	5,38	5,36
Fa fattore di attenuazione [-]	0,02	0,02
Fs fattore di smorzamento [-]	0,33	0,33
Msurf	4,4	
Msurf	4,4 costruzione	ciclo di vita
Msurf PEI [MJ/m²]		
	costruzione	ciclo di vita
PEI [MJ/m²]	costruzione 423,0	ciclo di vita 826,7
PEI [MJ/m²] GWP [kg CO2e/m²)]	costruzione 423,0 112,7	ciclo di vita 826,7 152,8
PEI [MJ/m²] GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)]	costruzione 423,0 112,7 112,8	ciclo di vita 826,7 152,8 152,9
PEI [MJ/m²] GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)] AP [g SO2e/m²]	costruzione 423,0 112,7 112,8 0,44	ciclo di vita 826,7 152,8 152,9 0,65
PEI [MJ/m²] GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)] AP [g SO2e/m²] ICC [-]	costruzione 423,0 112,7 112,8 0,44 74	ciclo di vita 826,7 152,8 152,9 0,65




Solaio verso cantina	parete verso scantinato non riscaldato

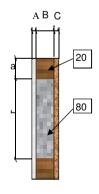
Risultati								
Qh = 18 kWh/mqa	Nature	179 points						
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a						

trasmittanza U secondo	stratigrafia [W/m²K]												
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Nature
1	266 piastrelle in ceramica	1,300	2300	0,84	150	0,01	50	0,78	0,78	0,0028	13,2		
2	57 caldana	1,330	2000	1,07	100	0,04	100	0,10	0,10	0,0002	0,6		
3	63 solaio con travetti e blocchi in calcest	ruzz(0,800	1500	1,11	50	0,04	100	0,10	0,10	0,0002	0,8		
4	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
5	236 pannello di polistirene espanso EPS 3	0 kg 0,031	30	1,45	30	0,01	50	4,17	4,17	0,0149	98,9		
6	184 pannello di lana di legno mineralizzata	con 0,078	450	1	5	0,2	50	-0,13	0,42	0,0009	3,8		
7													
8													
9													
10													
11													
12													
13													

	24h	25 h
trasmittanza termica U [W/m²K]	0,33	0,33
capacità termica interna [Wh/m²K]	21	22
capacità termica esterno [Wh/m²K]	2	2
trasmittanza termica periodica [W/m²	0,02	0,02
sfasamento [h]	13,5	13,7
ammettenza Y11 [W/m²K]	5,53	5,50
Fa fattore di attenuazione [-]	0,06	0,06
Fs fattore di smorzamento [-]	0,31	0,31
Msurf	0,9	94
	costruzione	ciclo di vita
PEI [MJ/m²]	1078,0	1795,6
GWP [kg CO2e/m²)]	89,5	131,3
GWPprocesso [kg CO2e/m²)]	92,1	133,8
AP [g SO2e/m²]	0,24	0,38
ICC [-]	64	0
quantità di materiali	6	
quantità di materiali certificati	0	
quantità di materiali regionali	0	

Parete1 esterna III+IV in forato	parete esterna non ventilata

Risultati								
Qh = 18 kWh/mqa	Nature	179 points						
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a						

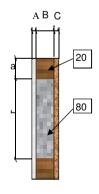

24h

25 h

trasmittanza U secondo stra	asmittanza U secondo stratigrafia [W/m²K]												
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat 0	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Nature
1	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
2	77 mattone forato	0,360	850	0,88	5	0,04	100	0,18	0,18	0,0005	2,3		
3	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
4													
5													
6												L	
7													
8												IЦ	
9												I <u>U</u>	
10													
11													
12													
13													

ratigrafia dell'elemento co	oti atti															
zione dell'elemento costri	ıttivo	(inse	eriment	to dell	a strati	grafia	median	ite il n	r. identif	icativo d	lel mate	eriale)				
	int	erno			s	trato pa	arallelo	alla su	perficie (dell'elem	iento co	struttivo			esterno	
			Α	В	С	D	_ <u>E_</u>	F	G	_H_		J	K	L_	<u></u>	percentuale [%]
	а	_	1	2	1	3	1									100
(opzionale	b	- 0													0 E	
(opzionale) с	interno													esterno	
(opzionale	d	-														
																100
pessore "s" dello strato [cm]		က	48	-	20	Ø								74,0	
ventilati	1															
ventuati																Rsi+Rse 0,17
= 1 / (R _{si} + R _t + R _{se})															U=	0,14 W/(m²K)

		20
trasmittanza termica U [W/m²K]	0,14	0,14
capacità termica interna [Wh/m²K]	17	17
capacità termica esterno [Wh/m²K]	12	12
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	23,3	23,6
ammettenza Y11 [W/m²K]	4,42	4,38
Fa fattore di attenuazione [-]	0,01	0,01
Fs fattore di smorzamento [-]	0,45	0,45
Msurf	4,4	12
	costruzione	ciclo di vita
PEI [MJ/m²]	1340,7	1744,4
GWP [kg CO2e/m²)]	114,2	154,3
GWPprocesso [kg CO2e/m²)]	114,4	154,5
AP [g SO2e/m²]	0,42	0,63
ICC [-]	88	0
quantità di materiali	5	
quantità di materiali certificati	0	
quantità di materiali regionali	0	

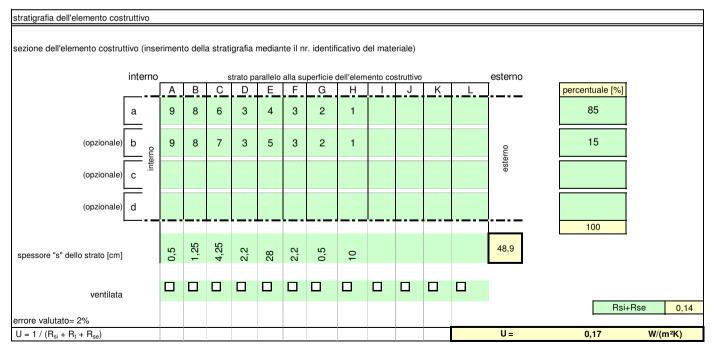

Parete sopraelevazione (verso esterno)	parete es	parete esterna non ventilata				

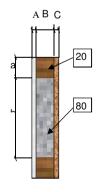
Risultati								
Qh = 18 kWh/mqa	Nature	179 points						
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a						

Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO ₂ e/kg	g SO ₂ e/kg	MJ/kg	Bonus	Nature
1	28 intonaco di calce e gesso	0,700	1300	0,9	10	0,02	50	0,09	0,09	0,0003	1,4		
2	16 lastre di cartongesso	0,210	900	1,05	8	0,02	50	0,23	0,26	0,0007	4,8		
3	117 lamiera di alluminio anodizzato	#####	2800	0,92	#####	0	50	6,42	6,42	0,0302	85,8		
4	309 intercap d'aria non ventilata flussoorizzont	1,667	1,2	1	1	0,02	100	0,00	0,00	0,0000	0,0		
5	189 pannello OSB 3 con colla poliuretanica	0,130	660	2	240	0,2	50	-1,05	0,49	0,0022	11,8		
6	178 pannello in fibra di legno 160 kg/m³	0,040	160	2	5	0,2	50	-0,80	0,91	0,0040	14,4		
7	190 legname grezzo, legno di abete rosso, ess	0,130	540	2	50	0,2	50	-1,41	0,11	0,0006	1,7		
8	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
9	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
10													
11													
12													
13													

stratigrafia dell'elemento co	strutti	ivo														
ezione dell'elemento costr	uttivo	(inse	rimen	to dell	a strati	igrafia i	mediar	nte il n	r. identif	icativo d	lel mate	eriale)				
	int	erno							perficie		ento co	struttivo			esterno	
			<u>A</u>	В	С	D	<u>E</u>	F	G	_H_		J	K	↓ <u>_</u>	.	percentuale [%]
	а	_	1	2	4	5	6	5	8	9						85
(opzionale) b	- 2	1	2	3	5	7	5	8	9					OL.	15
(opzionale) c	interno													esterno	
(opzionale) d	Ξ														
																100
spessore "s" dello strato [cm]		9,0	1,25	4,25	1,5	20	1,5	10	Ø					41,0	
ventilat	a			П												
errore valutato= 3%																Rsi+Rse 0,17
															U=	0.14 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$U = 1 / (R_{si} + R_t + R_{se})$															U =	0,14 W/(m ² K)

	24h	25 h
trasmittanza termica U [W/m²K]	0,14	0,14
capacità termica interna [Wh/m²K]	11	11
capacità termica esterno [Wh/m²K]	11	11
trasmittanza termica periodica [W/m²	0,01	0,01
sfasamento [h]	19,0	19,3
ammettenza Y11 [W/m²K]	2,85	2,80
Fa fattore di attenuazione [-]	0,04	0,04
Fs fattore di smorzamento [-]	0,64	0,65
Msurf	7,9	99
	costruzione	ciclo di vita
PEI [MJ/m²]	2424,1	4848,3
GWP [kg CO2e/m²)]	69,5	241,1
GWPprocesso [kg CO2e/m²)]	171,6	343,3
AP [g SO2e/m²]	0,81	1,62
ICC [-]	33	0
quantità di materiali	8	
quantità di materiali certificati	0	
quantità di materiali regionali	0	




Solaio di copertura sopraelevazione	soffitto esterno non ventilato

Risultati		
Qh = 18 kWh/mqa	Nature	179 points
Qc,sens = 6 kWh/mqa	CO ₂ =	10 kg/m²a

trasmittanza U secondo Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO ₂ e/kg	MJ/kg	Bonus	Nature
1	286 substrato vegetale per tetto verde	0,700	500	2	10	0	50	0,02	0,02	0,0001	0,3		
2	128 guaina impermeabilizzante bituminosa co	n 0,230	1247	1	1000	0,01	25	1,58	1,61	0,0087	51,2		
3	189 pannello OSB 3 con colla poliuretanica	0,130	660	2	240	0,2	50	-1,05	0,49	0,0022	11,8	Ш	
4	178 pannello in fibra di legno 160 kg/m³	0,040	160	2	5	0,2	50	-0,80	0,91	0,0040	14,4		
5	190 legname grezzo, legno di abete rosso, es	ss 0,130	540	2	50	0,2	50	-1,41	0,11	0,0006	1,7		
6	317 intercap d'aria non ventilata flusso ascen	d 1,875	1,2	1	1	0,02	100	0,00	0,00	0,0000	0,0		
7	117 lamiera di alluminio anodizzato	#####	2800	0,92	#####	0	50	6,42	6,42	0,0302	85,8		
8	16 lastre di cartongesso	0,210	900	1,05	8	0,02	50	0,23	0,26	0,0007	4,8		
9	28 intonaco di calce e gesso	0,700	1300	0,9	10	0,02	50	0,09	0,09	0,0003	1,4		
10													
11													
12													
13													

	24h	25 h
trasmittanza termica U [W/m²K]	0,17	0,17
capacità termica interna [Wh/m²K]	12	12
capacità termica esterno [Wh/m²K]	21	21
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	24,0	24,2
ammettenza Y11 [W/m²K]	3,03	2,99
Fa fattore di attenuazione [-]	0,03	0,03
Fs fattore di smorzamento [-]	0,62	0,63
Msurf	7,9	99
	costruzione	ciclo di vita
DELIMAT/sec21	2857,9	6354,4
PEI [MJ/m²]	2001,0	0334,4
GWP [kg CO2e/m²)]	35,7	236,3
GWP [kg CO2e/m²)]	35,7	236,3
GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)]	35,7 180,6	236,3 381,2
GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)] AP [g SO2e/m²]	35,7 180,6 0,84	236,3 381,2 1,78
GWP [kg CO2e/m²)] GWPprocesso [kg CO2e/m²)] AP [g SO2e/m²] ICC [-]	35,7 180,6 0,84 33	236,3 381,2 1,78

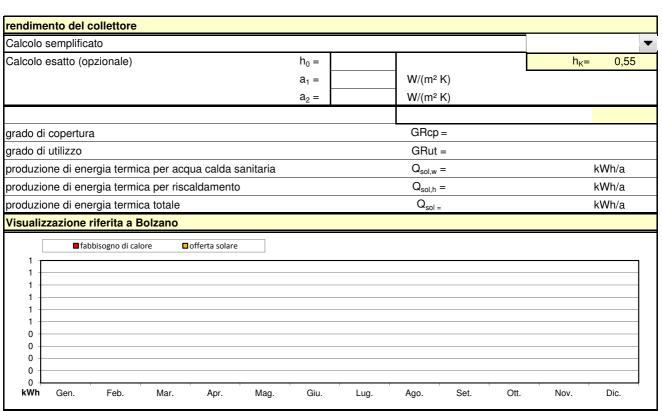
	fabbisogno di riscaldamento
oggetto:	Blocco B; civici 67-69
	Bolzano

involucro dell'edificio								
superficie di dispersione termica dell'edificio								
$A_B = \hat{a} A_i$	A _B =	2.576 m ²						
rapporto superficie dell'involucro riscaldato volume lordo riscaldato								
A_{B}/V_{B}	A/V =	0,37 1/m						

Indici			
Indice per elementi costruttivi			<u>-</u>
$L_e + L_u + L_g += a A_i * U_i * f_i$	$L_e + L_u + L_g =$	816	W/K
Aumento dell'indice per ponti termici			
algoritmo dettagliato	$L_{\psi} + L_{c} =$	0	W/K
Indice di trasmissione dell'involucro dell'edificio			
$L_T = L_e + L_u + L_g + L_y + L_c$	L _T =	816	W/K
Indice di ventilazione dell'involucro dell'edificio			
$L_V = r_a * c_a / 3600 * S(n^{(i)} * V_N^{(i)})$	L _V =	335	W/K
Indice complessivo			
$L = L_T + L_V$	L =	1.151	W/K

coefficiente medio di trasmissione globale			
coefficiente medio di trasmissione globale dell'involucro dell'edificio			
$U_{m} = L_{T}/A_{B}$	U _m =	0,32	W/(m²K)

guadagni e perdite di calore riferito a		Bolzano	Bolzano	
perdita di calore per trasmissionedurante il periodo di riscaldamento (ottapr.) $Q_T = \ L_T * HGT$	Q _T =	58.424	58.424	kWh/a
perdita di calore per ventilazione durante il periodo di riscaldamento (ottapr.) $Q_V = \ L_V \ ^\star \ HGT$	Q _V =	23.961	23.961	kWh/a
guadagni per carichi internidurante il periodo di riscaldamento (ottapr.) $Q_i = \ q_i * NGF_B * HT$	Q _i =	32.080	32.080	kWh/a
guadagni solaridurante il periodo di riscaldamento (ottapr.) $Q_s = S I_j^* (S A_g * f_S * g_w)_j$	Q _s =	35.371	35.371	kWh/a
fabbisogno di riscaldamento $Q_h = Q_T + Q_V - h_h (Q_S + Q_i) - Qrec,attivi$	Q _h =	33.180	33.180	kWh/a
rapporto tra guadagni e perdite di calore $Y = (Q_s + Q_i) / (Q_T + Q_V)$	γ=	82	82	%
fattore di utilizzo degli apporti termici $\eta_h = (QT + QV - Qh - Qrec,attivi) / (QS + Qi)$	η _h =	73	72,9	%


Fabbisogno di energia termica e potenza di riscaldamento riferito a		Bolzano	Bolzano	
fabbisogno di energia termica per riscaldamento relativo alla superficie netta				
$HWB_{NGF} = Q_h / NGF_B$	HWB _{NGF} =	18,0	18,0	kWh/(m²a)
potenza di riscaldamento dell'edificio				
$P_{tot} = (L_T + L_V) * (q_{i-} q_{ne})$	P _{tot} =	40,3	40,3	kW
potenza di riscaldamento relativa alla superficie netta				
$P_1 = P_{tot} / NGF_B$	P ₁ =	22,4	22,4	W/m ²

Classe di efficenza energetica dell'involucro	
А	18 kWh/(m²a)

	Impianto solare termico				
oggetto:	Blocco B; civici 67-69	Q _h =	18 kWh/m²a	Nature	179 points
	Bolzano	Q _{c,sens} =	6 kWh/m²a	CO ₂ =	10 kg/m²a

dati generali	Mar	ca e modello:	
superficie netta del singolo collettore	A _N =	m²	uso
numeri di collettori	n _K =		•
azimuth (-90° = est +90° = ovest)	f _S =	٥	
zenith	f _N =	٥	

1		impianto fotovoltaico		
oggetto:	Blocco B; civio	ci 67-69 Q _h = 18 kWh/m²a	Nature	179 points
	Bolzano	$Q_c = 11 \text{ kWh/m}^2 \text{a}$	CO ₂ =	10 kg/m²a

ati generali				Marca	a e modello):				
perficie totale netta				A _{Ph} =	59	m ²				
ndimento impianto i				h _{Ph} =	20	%				
otenza massima				P _{peak} =		kW _{pe}	ak			
zimuth (-90 = est +9	0 = ovest)			p-0	0	•				
enith	,				25	0				
								Bolzano	Bolzano	
ado di copertura						GR	p=	80%	80%	
ado di utilizzo						GR	ut =	83%	83%	
nergia elettrica prod	otta ed utilizz	ata dall'edif	icio			Q _{el,use}	ed,an =	11.678	11.678	kWh/a
nergia elettrica prod	otta ed espor	tata				Q _{el,ex}	_{p,an} =	0	0	kWh/a
nergia elettrica prod	otta e re-imp	ortata				Q _{el,red}	_{el,an} =	2.331	2.331	kWh/a
isualizzazione rifer	ita a Bolzan	0								
.600										
.400 .200 .000 .000 .000 .000 .000 .000	eb. Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.
.400 .200 .000 .000 .000 .000 .000 .000				Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.
.400 .200 .000 800 600 400 200 0 0 Energia elettrica da	a fotovoltaico		r:	Giu.		Ago.		Ott.		Dic.
.400 .200 .000 800 600 400 200 0 0 Energia elettrica da	a fotovoltaico	utilizzata pe	r:							Dic.
.400 .200 .000 800 600 400 200 0 0 Energia elettrica da	a fotovoltaico	utilizzata pe	r:							Dic.
.400 .200 .000 .000 .000 .000 .000 .000	a fotovoltaico	utilizzata pe	r:							Dic.
.400 .200 .000 .800 .400 .200 .0 kWh Gen. Fe	a fotovoltaico	utilizzata pe	r:							Dic.
.400 .200 .000 .800 .400 .200 .0 kWh Gen. Fe	a fotovoltaico	utilizzata pe	r:							Dic.
.400 .200 .000 .800 .400 .200 .0 kWh Gen. Fe	a fotovoltaico	utilizzata pe	r:							Dic.
.400 .200 .000 .800 .600 .400 .200 .0 Gen. Fe Energia elettrica da 	a fotovoltaico	utilizzata pe	r:							Dic.

BLOCCO C+D – CIVICI 71-73-75 BLOCK C+D – HAUSNR. 71-73-75

	Dati dell'oggetto					
oggetto:	Blocco C; civici 71-73-75					
	Bolzano					

Destinazione d'uso dell'edificio		E.1 (1) Edificio plurifamiliare			
Tipo di costruzione:	oo di costruzione: costruzione pesante		▼		
Tipo di intervento	Rinnovamento degli impianti	•	Ristrutturazione > 25% della superficie dell'involucro (finestre escluse		
superficie utile lorda riscaldata [m²]			BGF _B	2.6	627
superficie utile netta riscaldata [m²] (opzionale)			NGF _B =		2.154
volume lordo riscaldato dell'edificio [m³]			V _B =	8.3	809
volume netto riscaldato dell'edificio [m³] (opzionale)			V _N =		5.816
numero di persone nell'edificio		Pers =		65,00	

dati climatici		dati climatici dei Comuni dell'Alto Adige		
Provincia		Bolzano		
Comune		Bolzano		
Altitudine [m]	/ differenza di altitudine rispetto al municipio [m]	262		
Informazioni specifich	e sul comune (NO per i comuni dell' Alto Adige e del Friul	i)		
2° Provincia vicina				
posizione del Comune	e (Lat/Lon) in valore decimale (p.es: 42°57' = 42,95)			
distanza dal capoluog	o di Provincia [m]			
distanza dal 2°capolu	ogo di Provincia [m]			
calcolo dati climatici		Clima calcolo	- Berechnung	

Blower door test	n ₅₀ =	V	ol/h
temperatura esterna di progetto invernale del Comune [$^{\circ}$ C]	Θ _{ne} =		-15,00
temperatura esterna di progetto invernale del capoluogo di Provincia [℃]		Θ _{ne} =	-15,0
temperatura media interna [℃] inverno	$\Theta_i =$		20,0
temperatura media interna [$^{\circ}$ C] estate	$\Theta_{e} =$		26,0
potenza termica media degli apporti di calore interni [W/m²] - inve	erno		3,5
potenza termica media degli apporti di calore interni [W/m²] - esta	ate		3.5

mese	temperatura media mensile esterna [°C] Bolzano	radiazione globale giornaliera media mensile su superficie orizzontale [kWh/m²d] Bolzano	temperatura di ingresso dell'acqua fredda sanitaria [°C]	
Gen.	-0,50	1,28	15	
Feb.	2,77	2,42	15	
Mar.	8,00	3,67	15	
Apr.	12,80	4,81	15	
Mag.	16,62	5,83	15	
Giu.	21,09	6,06	15	
Lug.	22,94	6,36	15	
Ago.	22,18	5,28	15	
Set.	18,69	4,00	15	
Ott.	12,26	2,61	15	

Nov.	5,50	1,47	15	Casa
Dic.	0.59	1.08	15	

Impianto di ventilazione					
oggetto:	Blocco C; civici 71-73-7	Q _h =	19 kWh/m²a	Nature	201 points
	Bolzano	Q _{c,sens} =	7 kWh/m²a	CO ₂ =	10 kg/m²a

ventilazione notturna (scegliere "chiuso" per la certificazione)			
ventilazione notturna	chiuso		
aperture			
indice di ricambio d'aria n =		1/h	

apparecchio di ventilazione 1 Marca e modello:		Is	odomus Meltem M-WR	G
utilizzo			solo invernale	▼
portata d'aria esterna dell'apparecchio di v	entilazione	$q_{v,d} =$	2.326	m³/h
efficienza termica del recuperatore di calo	re - inverno	$\eta_{\theta i,d} =$	73	%
efficienza termica del recuperatore di calo	re - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di calore - inverno		$\eta_{xi,d} =$		%
assorbimento elettrico specifico		SFP _d =	0,17	Wh/m ³
volume ventilato		V _N =	5.816	m³
tempo di servizio giornaliero		t _B =	24	h/d
indice di ricambio d'aria fittizio - inverno		n =	0,21	1/h
indice di ricambio d'aria fittizio - estate		n =		1/h

apparecchio di ventilazione 2 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d}$ =	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e,d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

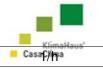
apparecchio di ventilazione 3 Marca e modello:			
utilizzo		solo invernale	lacksquare
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$		m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{ heta_{i,d}} =$		%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$		%
assorbimento elettrico specifico	SFP _d =		Wh/m ³
volume ventilato	V _N =		m³
tempo di servizio giornaliero	t _B =		h/d
indice di ricambio d'aria fittizio - inverno	n =		1/h
indice di ricambio d'aria fittizio - estate	n =		1/h

ventilazione naturale			
volume ventilato - inverno	V _N =		m³
volume ventilato - estate	$V_N =$	5.816	m³
indice di ricambio d'aria	n =	0,50	1/h

Recuperatore attivo 1	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2 % A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	atori	SFP _d =		Wh/m ³
volume ventilato		$V_N =$		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

Recuperatore attivo 2	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20 °	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2°/A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	tori	SFP _d =		Wh/m ³
volume ventilato		V _N =		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%

Recuperatore attivo 3	Marca e modello:			
portata d'aria totale dell'apparecchio di	ventilazione	$q_{v,d} =$		m³/h
Potenza termica / elettrica A-7 % A20°	ф _{out} /W _{in}			kW
Potenza termica / elettrica A2 º/A20 °	φ _{out} /W _{in}			kW
Potenza termica / elettrica A7 % A20 °	ф _{out} /W _{in}			kW
assorbimento elettrico specifico ventila	atori	SFP _d =		Wh/m ³
volume ventilato		V _N =		m³
tempo di servizio giornaliero		t _B =		h/d
indice di ricambio d'aria - inverno		n =		1/h
		Bolzano	Bolzano	
Energia termica recuperata	Qrec =			
Efficienza effettiva di recupero	ηeq =			%



apparecchio di ventilazione 4 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d}$ $=$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 5 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	η _{θi,d} =	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 6 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

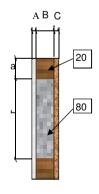
apparecchio di ventilazione 7 Marca e modello:			
utilizzo		solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$		m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$		%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$		%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$		%
assorbimento elettrico specifico	SFP _d =		Wh/m ³
volume ventilato	$V_N =$		m³
tempo di servizio giornaliero	t _B =		h/d

indice di ricambio d'aria fittizio - inverno	n =	CasaCylma
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 8 Marca e modello:		
utilizzo	solo invernale	•
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta i,d}$ $=$	%
efficienza termica del recuperatore di calore - estate	$\eta_{\theta e,d} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 9 Marca e modello:		
utilizzo	solo invernale	▼
portata d'aria esterna dell'apparecchio di ventilazione	q _{v,d} =	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\Theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	$\eta_{ heta ext{e,d}} =$	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

apparecchio di ventilazione 10 Marca e modello:		
utilizzo	solo invernale	▼
portata d'aria esterna dell'apparecchio di ventilazione	$q_{v,d} =$	m³/h
efficienza termica del recuperatore di calore - inverno	$\eta_{\theta i,d} =$	%
efficienza termica del recuperatore di calore - estate	η _{θe,d} =	%
efficienza igrometrica del recuperatore di calore - inverno	$\eta_{xi,d} =$	%
assorbimento elettrico specifico	SFP _d =	Wh/m ³
volume ventilato	V _N =	m³
tempo di servizio giornaliero	t _B =	h/d
indice di ricambio d'aria fittizio - inverno	n =	1/h
indice di ricambio d'aria fittizio - estate	n =	1/h

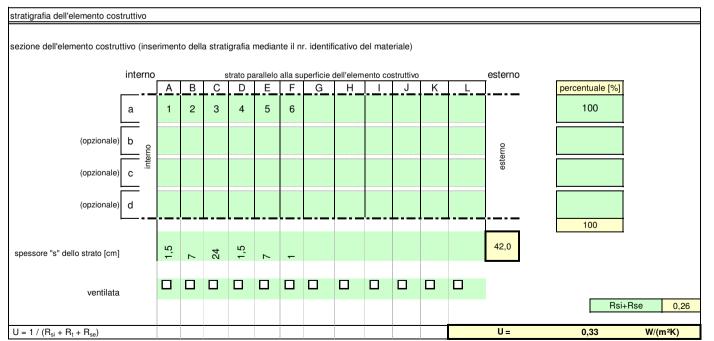

Parete1 esterna I+II in pietra	parete es	terna non ventilata

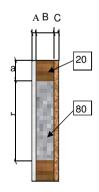
Risultati		
Qh = 19 kWh/mqa	Nature	201 points
Qc,sens = 7 kWh/mqa	CO ₂ =	10 kg/m²a

trasmittanza U second	o stratigrafia [W/m²K]												
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO ₂ e/kg	MJ/kg	Bonus	S Nature
1	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
2	332 Muratura in pietra	2,300	2600	1	70	0,04	100	0,06	0,06	0,0002	0,0		
3	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													

ratigrafia dell'elemento co	strutt	IVO														
zione dell'elemento costi	uttivo	(inse	erimen	to dell	a strati	grafia	mediar	ite il ni	r. identif	icativo c	lel mate	eriale)				
	int	erno	ı		s	trato pa	arallelo	alla su	perficie (dell'elem	iento co	struttivo			esterno	
			Α	В	С	D	E	F	G	_Н_		J	K	L_L	[. <u> </u>	percentuale [%]
	а	_	1	2	1	3	1									100
(opzional	e) b	- e													Ot.	
(opzional	e) C	interno													esterno	
(opzional	e) d															
																100
pessore "s" dello strato [cn	1]		3	48	-	20	N								74,0	
ventilai	2															
ventilal	a															Rsi+Rse 0,17
= 1 / (R _{si} + R _t + R _{se})					-										U =	0,17 W/(m ² K)

	24h	24 h
trasmittanza termica U [W/m²K]	0,17	0,17
capacità termica interna [Wh/m²K]	21	20
capacità termica esterno [Wh/m²K]	12	12
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	19,0	19,0
ammettenza Y11 [W/m²K]	5,38	5,39
Fa fattore di attenuazione [-]	0,02	0,02
Fs fattore di smorzamento [-]	0,33	0,33
Msurf	4,4	12
	costruzione	ciclo di vita
PEI [MJ/m²]	423,0	826,7
GWP [kg CO2e/m²)]	112,7	152,8
GWPprocesso [kg CO2e/m²)]	112,8	152,9
AP [g SO2e/m²]	0,44	0,65
ICC [-]	74	0
quantità di materiali	5	
quantità di materiali certificati	0	

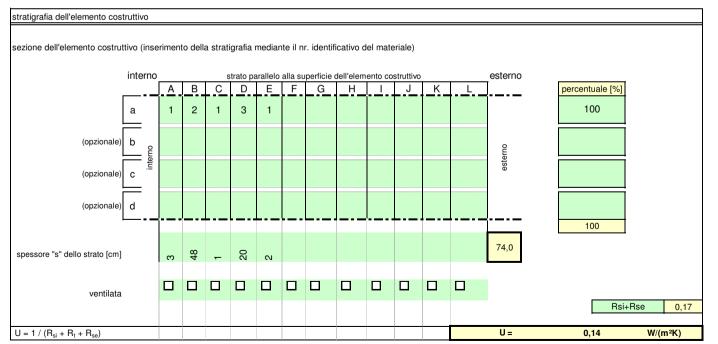


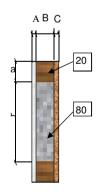

Solaio verso cantina	parete verso scantinato non riscaldato

Risultati		
Qh = 19 kWh/mqa	Nature	201 points
Qc,sens = 7 kWh/mqa	CO ₂ =	10 kg/m²a

trasmittanza U secondo	stratigrafia [W/m²K]												
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Nature
1	266 piastrelle in ceramica	1,300	2300	0,84	150	0,01	50	0,78	0,78	0,0028	13,2		
2	57 caldana	1,330	2000	1,07	100	0,04	100	0,10	0,10	0,0002	0,6		
3	63 solaio con travetti e blocchi in calcest	ruzz(0,800	1500	1,11	50	0,04	100	0,10	0,10	0,0002	0,8		
4	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
5	236 pannello di polistirene espanso EPS 3	0 kg 0,031	30	1,45	30	0,01	50	4,17	4,17	0,0149	98,9		
6	184 pannello di lana di legno mineralizzata	con 0,078	450	1	5	0,2	50	-0,13	0,42	0,0009	3,8		
7													
8													
9													
10													
11													
12													
13													

	24h	24 h
trasmittanza termica U [W/m²K]	0,33	0,33
capacità termica interna [Wh/m²K]	21	21
capacità termica esterno [Wh/m²K]	2	2
trasmittanza termica periodica [W/m²	0,02	0,02
sfasamento [h]	13,5	13,5
ammettenza Y11 [W/m²K]	5,53	5,54
Fa fattore di attenuazione [-]	0,06	0,06
Fs fattore di smorzamento [-]	0,31	0,31
Msurf	0,9	94
	costruzione	ciclo di vita
PEI [MJ/m²]	1078,0	1795,6
GWP [kg CO2e/m²)]	89,5	131,3
GWPprocesso [kg CO2e/m²)]	92,1	133,8
AP [g SO2e/m²]	0,24	0,38
ICC [-]	64	0
quantità di materiali	6	
quantità di materiali certificati	0	
quantità di materiali regionali	0	

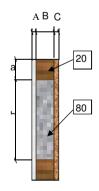



Parete1 esterna III+IV in forato	parete esterna non ventilata

Risultati	
Qh = 19 kWh/mqa	Nature 201 points
Qc,sens = 7 kWh/mqa	CO ₂ = 10 kg/m ² a

trasmittanza U secondo st	ratigrafia [W/m²K]												
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO ₂ e/kg	MJ/kg	Bonus	Nature
1	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
2	77 mattone forato	0,360	850	0,88	5	0,04	100	0,18	0,18	0,0005	2,3		
3	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
4													
5													
6												Ш	
7													
8													
9													
10													
11													
12													
13													

	24h	24 h
trasmittanza termica U [W/m²K]	0,14	0,14
capacità termica interna [Wh/m²K]	17	17
capacità termica esterno [Wh/m²K]	12	12
trasmittanza termica periodica [W/m²	0,00	0,00
sfasamento [h]	23,3	23,2
ammettenza Y11 [W/m²K]	4,42	4,44
Fa fattore di attenuazione [-]	0,01	0,01
Fs fattore di smorzamento [-]	0,45	0,45
Msurf	4,4	12
	costruzione	ciclo di vita
PEI [MJ/m²]	1340,7	1744,4
GWP [kg CO2e/m²)]	114,2	154,3
GWPprocesso [kg CO2e/m²)]	114,4	154,5
AP [g SO2e/m²]	0,42	0,63
ICC [-]	88	0
quantità di materiali	5	
quantità di materiali certificati	0	
quantità di materiali regionali	0	

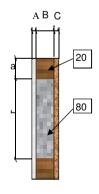

	Parete sopraelevazione (verso esterno)	parete es	terna non ventilata
ľ			

Risultati		
Qh = 19 kWh/mqa	Nature	201 points
Qc,sens = 7 kWh/mqa	CO ₂ =	10 kg/m²a

Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO ₂ e/kg	g SO ₂ e/kg	MJ/kg	Bonus	Nature
1	28 intonaco di calce e gesso	0,700	1300	0,9	10	0,02	50	0,09	0,09	0,0003	1,4		
2	16 lastre di cartongesso	0,210	900	1,05	8	0,02	50	0,23	0,26	0,0007	4,8		
3	117 lamiera di alluminio anodizzato	#####	2800	0,92	#####	0	50	6,42	6,42	0,0302	85,8		
4	309 intercap d'aria non ventilata flussoorizzont	1,667	1,2	1	1	0,02	100	0,00	0,00	0,0000	0,0		
5	189 pannello OSB 3 con colla poliuretanica	0,130	660	2	240	0,2	50	-1,05	0,49	0,0022	11,8		
6	178 pannello in fibra di legno 160 kg/m³	0,040	160	2	5	0,2	50	-0,80	0,91	0,0040	14,4		
7	190 legname grezzo, legno di abete rosso, ess	0,130	540	2	50	0,2	50	-1,41	0,11	0,0006	1,7		
8	253 lana di roccia 60 kg/m3	0,036	60	1,03	1	0,01	50	1,93	1,93	0,0141	21,4		
9	31 intonaco di calce-cemento	0,800	1800	1,13	25	0,02	50	0,16	0,16	0,0004	1,4		
10													
11													
12													
13													

stratigrafia dell'elemento co	strutti	ivo														
ezione dell'elemento costr	uttivo	(inse	rimen	to dell	a strati	igrafia i	mediar	nte il n	r. identif	icativo d	lel mate	eriale)				
	int	erno							perficie		ento co	struttivo			esterno	
			<u>A</u>	В	С	D	<u>E</u>	F	G	_H_		J	K	↓ <u>_</u>	.	percentuale [%]
	а	_	1	2	4	5	6	5	8	9						85
(opzionale) b	- 2	1	2	3	5	7	5	8	9					OL.	15
(opzionale) c	interno													esterno	
(opzionale) d	Ξ														
																100
spessore "s" dello strato [cm]		9,0	1,25	4,25	1,5	20	1,5	10	Ø					41,0	
ventilat	a			П												
errore valutato= 3%																Rsi+Rse 0,17
															U=	0.14 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$U = 1 / (R_{si} + R_t + R_{se})$															U =	0,14 W/(m ² K)

	24h	24 h
trasmittanza termica U [W/m²K]	0,14	0,14
capacità termica interna [Wh/m²K]	11	11
capacità termica esterno [Wh/m²K]	11	11
trasmittanza termica periodica [W/m²	0,01	0,01
sfasamento [h]	19,0	19,0
ammettenza Y11 [W/m²K]	2,85	2,86
Fa fattore di attenuazione [-]	0,04	0,04
Fs fattore di smorzamento [-]	0,64	0,64
Msurf	7,9	99
	costruzione	ciclo di vita
PEI [MJ/m²]	2424,1	4848,3
GWP [kg CO2e/m²)]	69,5	241,1
01415		0.40.0
GWPprocesso [kg CO2e/m²)]	171,6	343,3
AP [g SO2e/m²]	171,6 0,81	343,3 1,62
AP [g SO2e/m²]	0,81	1,62
AP [g SO2e/m²] ICC [-]	0,81 33	1,62


Solaio di copertura sopraelevazione	soffitto e	sterno non ventilato	

Risultati	
Qh = 19 kWh/mqa	Nature 201 points
Qc,sens = 7 kWh/mqa	CO ₂ = 10 kg/m ² a

trasmittanza U secondo strat	igrafia [W/m²K]												
Nr.	ID materiale	λ	ρ	С	μ	κ	tempo di utilizzo	GWP	GWP process	AP	PEI	certificat o	regionale
		W/(mK)	kg/m³	kJ/kgK	-	kg/kg	anni	kg CO₂e/kg	kg CO₂e/kg	g SO₂ e/kg	MJ/kg	Bonus	Nature
1	286 substrato vegetale per tetto verde	0,700	500	2	10	0	50	0,02	0,02	0,0001	0,3		
2	128 guaina impermeabilizzante bituminosa coi	0,230	1247	1	1000	0,01	25	1,58	1,61	0,0087	51,2		
3	189 pannello OSB 3 con colla poliuretanica	0,130	660	2	240	0,2	50	-1,05	0,49	0,0022	11,8	Ш	
4	178 pannello in fibra di legno 160 kg/m³	0,040	160	2	5	0,2	50	-0,80	0,91	0,0040	14,4		
5	190 legname grezzo, legno di abete rosso, es	0,130	540	2	50	0,2	50	-1,41	0,11	0,0006	1,7		
6	317 intercap d'aria non ventilata flusso ascend	1,875	1,2	1	1	0,02	100	0,00	0,00	0,0000	0,0		
7	117 lamiera di alluminio anodizzato	#####	2800	0,92	#####	0	50	6,42	6,42	0,0302	85,8		
8	16 lastre di cartongesso	0,210	900	1,05	8	0,02	50	0,23	0,26	0,0007	4,8		
9	28 intonaco di calce e gesso	0,700	1300	0,9	10	0,02	50	0,09	0,09	0,0003	1,4		
10													
11													
12													
13													

stratigrafia dell'elemento cos	strutti	vo														
sezione dell'elemento costru	ittivo	(inse	riment	to della	a strati	grafia	mediar	ite il n	r. identif	icativo d	lel mate	eriale)				
	inte	erno			s	trato pa	arallelo	alla su	perficie o	dell'elem	ento co	struttivo			esterno	
			Α	В	С	D	E	F	G	Н		J	K	L]	percentuale [%]
	а		9	8	6	3	4	3	2	1]	85
(opzionale)	b	no	9	8	7	3	5	3	2	1					0 (1	15
(opzionale)	С	interno													esterno	
(opzionale)	(opzionale) d															
											·					100
spessore "s" dello strato [cm]			0,5	1,25	4,25	2,2	28	2,2	0,5	9					48,9	
ventilata	ı															
errore valutato= 2%																Rsi+Rse 0,14
$U = 1 / (R_{si} + R_t + R_{se})$															U=	0,17 W/(m²K)

	24h	24 h			
trasmittanza termica U [W/m²K]	0,17	0,17			
capacità termica interna [Wh/m²K]	12	12			
capacità termica esterno [Wh/m²K]	21	20			
trasmittanza termica periodica [W/m²	0,00	0,00			
sfasamento [h]	24,0	0,1			
ammettenza Y11 [W/m²K]	3,03	3,04			
Fa fattore di attenuazione [-]	0,03	0,03			
Fs fattore di smorzamento [-]	0,62	0,62			
Msurf	7,99				
	costruzione	ciclo di vita			
PEI [MJ/m²]	2857,9	6354,4			
GWP [kg CO2e/m²)]	35,7	236,3			
GWPprocesso [kg CO2e/m²)]	180,6	381,2			
AP [g SO2e/m²]	0,84	1,78			
ICC [-]	33	0			
quantità di materiali	8				
quantità di materiali certificati	0				
quantità di materiali regionali	0				

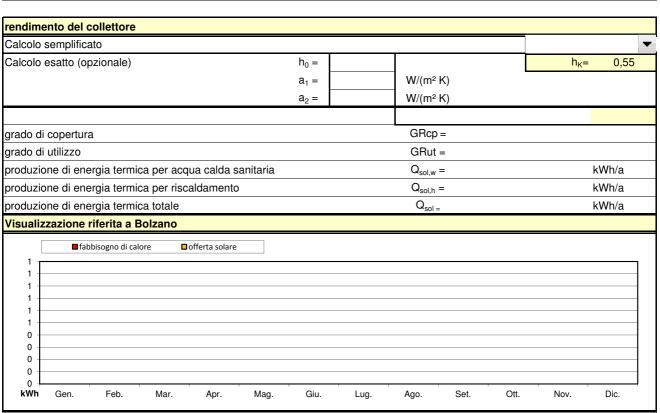
	fabbisogno di riscaldamento
oggetto:	Blocco C; civici 71-73-75
	Bolzano

involucro dell'edificio										
superficie di dispersione termica dell'edificio										
$A_{B} = \hat{a} A_{i}$	A _B =	3.221	m²							
rapporto superficie dell'involucro riscaldato volume lordo riscaldato										
A_{B}/V_{B}	A/V =	0,39	1/m							

Indici			
Indice per elementi costruttivi			
$L_e + L_u + L_g += a A_i * U_i * f_i$	$L_e + L_u + L_g =$	1.119	W/K
Aumento dell'indice per ponti termici			
algoritmo dettagliato	$L_{\psi} + L_{c} =$	0	W/K
Indice di trasmissione dell'involucro dell'edificio			
$L_T = L_e + L_u + L_g + L_y + L_c$	L _T =	1.119	W/K
Indice di ventilazione dell'involucro dell'edificio			
$L_V = r_a * c_a / 3600 * S(n^{(i)} * V_N^{(i)})$	L _V =	400	W/K
Indice complessivo			
$L = L_T + L_V$	L =	1.519	W/K

coefficiente medio di trasmissione globale		
coefficiente medio di trasmissione globale dell'involucro dell'edificio		
$U_m = L_T / A_B$	U _m =	0,35 W/(m ² K)

guadagni e perdite di calore riferito a		Bolzano	Bolzano	
perdita di calore per trasmissione durante il periodo di riscaldamento (ottapr.) $Q_T = \ L_T \ ^* \ HGT$	Q _T =	80.087	80.087	kWh/a
perdita di calore per ventilazione durante il periodo di riscaldamento (ottapr.) $Q_V = \ L_V \ ^\star \ HGT$	Q _V =	28.651	28.651	kWh/a
guadagni per carichi internidurante il periodo di riscaldamento (ottapr.) $Q_i = \ q_i * NGF_B * HT$	Q _i =	38.362	38.362	kWh/a
guadagni solaridurante il periodo di riscaldamento (ottapr.) $Q_s = S I_j * (S A_g * f_S * g_w)_j$	Q _s =	58.940	58.940	kWh/a
fabbisogno di riscaldamento $Q_h = Q_T + Q_V - h_h (Q_S + Q_i) - Qrec,attivi$	Q _h =	41.605	41.605	kWh/a
rapporto tra guadagni e perdite di calore $Y = (Q_s + Q_i) / (Q_T + Q_V)$	γ=	89	89	%
fattore di utilizzo degli apporti termici $\eta_h = (QT + QV - Qh - Qrec,attivi) / (QS + Qi)$	n _h =	69	69,0	%


Fabbisogno di energia termica e potenza di riscaldamento riferito a		Bolzano	Bolzano	
fabbisogno di energia termica per riscaldamento relativo alla superficie netta				
$HWB_{NGF} = Q_h / NGF_B$	HWB _{NGF} =	19,0	19,0	kWh/(m²a)
potenza di riscaldamento dell'edificio				
$P_{tot} = (L_T + L_V) * (q_i. q_{ne})$	P _{tot} =	53,2	53,2	kW
potenza di riscaldamento relativa alla superficie netta				
$P_1 = P_{tot} / NGF_B$	P ₁ =	24,7	24,7	W/m ²

Classe di effic	enza energetica dell'involucro	
А	19	kWh/(m²a)

	Impianto solare termico			
oggetto:	Blocco C; civici 71-73-75	Q _h = 19 kWh/m ² a	Nature	201 points
	Bolzano	Q _{c,sens} = 7 kWh/m²a	CO ₂ =	10 kg/m²a

dati generali	Marca e	modello:	
superficie netta del singolo collettore	A _N =	m²	uso
numeri di collettori	n _K =		▼
azimuth (-90° = est +90° = ovest)	f _S =	0	
zenith	f _N =	٥	

/		impianto fotovoltaico		
oggetto:	Blocco C; civ	ici 71-73-75 Q _h = 19 kWh/m²a	Nature	201 points
	Bolzano	$Q_c = 12 \text{ kWh/m}^2 \text{a}$	CO ₂ =	10 kg/m²a

lati gen							a e mode	ello:					
•	e totale net					A _{Ph} =	88		m²				
	nto impiant	o fotovol	taico			h _{Ph} =	20		%				
	massima					P _{peak} =			kW_{peak}				
	(-90 = est -	+90 = ov	est)				0		0				
enith							25		0				
											Bolzano	Bolzano)
	copertura								GRcp		86%	86%	
grado di									GRut		70%	70%	
nergia e	elettrica pro	odotta ec	d utilizzata	a dall'edific	cio				Q _{el,used,a}	n =	14.797	14.797	kWh/a
nergia e	elettrica pro	odotta ec	d esportat	a					Q _{el,exp,a}		3.903	3.903	kWh/a
nergia e	elettrica pro	odotta e	re-importa	ata					Q _{el,redel,a}	n =	2.314	2.314	kWh/a
/isualiza	zazione rif	erita a E	Bolzano										
2.500													
2.000	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago	D.	Set.	Ott.	Nov.	Dic.
2.000 1.500 1.000 500 0 kWh	gia elettrica		oltaico uti		:	Giu.			o.		Ott.		Dic.
2.000 1.500 1.000 500 0 kWh	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.
2.000 1.500 1.000 500 0 kWh	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.
2.000 1.500 1.000 500 0 kWh	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.
2.000 1.500 1.000 500 0 kWh Energ 1.200	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.
2.000 1.500 1.000 500 0 kWh Energy 1.200 1.000	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.
2.000 1.500 1.000 500 kWh Energ 1.200 - 1.000 - 800 - 600 - 400 -	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.
2.000 1.500 1.000 500 0 kWh Energ 1.200 - 1.000 - 800 -	gia elettrica	da fotov	oltaico uti	lizzata per	:								Dic.